Latest News

Americans are fatter than ever and processed food is to blame
Before diving into this article we need to clarify how being obese is measured. There are many ways to...
Read more
Through the Microscope updates
An important feature of Through the Microscope is the animations that depict important processes. Often...
Read more
Obesity and the Microbiome
A large body of evidence is emerging showing that the microbiome has a role in obesity and I cover some...
Read more
New updates to Why Microbes Matter
Chapters 4, 5, 8, 10, and 14 of Why Microbes Matter have been updated to reflect some new information...
Read more
The very real danger of alfatoxins
Food products, especially harvested grains, need to be stored carefully. Proper management means storing...
Read more

Figure 16.2. B cell activation. Binding of antibody activates tyrosine kinase and tyrosine phosphorylase in the cytoplasm that then phosphorylates and dephosphorylates tyrosine residues on the Ig-α/Ig-β polypeptide. These phosphorylation/dephosphorylation reactions activate B cells by at least three different pathways: (i) Activated tyrosine residues on the Ig-α/Ig-β polypeptide cause phospholipase C activity to increase. Phospholipase C then cleaves phospholipids into inositol triphosphate and diacyl glycerol. Diacyl glycerol activates protein kinase C eventually leading to the formation of nuclear factor NF-κB. (ii) Inositol triphosphate causes Ca2+ influx from the endoplasmic reticulum and the outside environment. Increased Ca2+ concentrations activate calmodulin that in turn phosphorylates Ets-1, a DNA binding protein. (iii) Activated tyrosine residues on the Ig-α/Ig-β polypeptide activate the p21ras protein, which leads to the activation of a serine/threonine kinase. This in turn phosphorylates cJUN, another DNA binding protein. NF-κB, Ets-1 and cJUN then travel to the nucleus and cause the transcription of specific genes important in B cell activation.